

VATT&EK: Formalization of Cyber Attacks on Intelligent Transport Systems – a TTP based approach for Automotive and Rail

7th ACM Computer Science in Cars Symposium (CSCS '23), December 05,
2023, Darmstadt, Germany

Content

1. Project background
2. Motivation
3. VATT&EK Framework
 - in Automotive
 - in Railway
 - Use Cases
4. Conclusion & Outlook

Project background

VATT&EK Framework

Vehicle intrusion detection and prevention in a standardized structure for road and rail

- Development of a multi-modal and **holistic security monitoring system for vehicles**
- Joint consideration of **road and rail vehicles** to identify and utilize synergy effects
- Conception and definition of a **standardized security architecture**
- Design, implementation and testing of secure on-board components to **detect vehicle-specific attacks** as well as scaling attacks on vehicle fleets, groups or communication channels (backend analytics)
- **We discovered: Common attack formalization models have reached their limits** when it comes to ITS security monitoring at all architectural levels
 - We need a holistic understanding of attack vectors and attack behavior on ITS
 - We need a holistic understanding of vehicle architectures and the attack phases on each architecture level
 - There was a need for a common and sound taxonomy! → VATT&EK

SPONSORED BY THE

Consortium:

Fraunhofer SIT

More FINESSE: <https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/finesse>

Motivation VATT&EK in ITS

Why VATT&EK in ITS?

Current challenges in ITS cybersecurity

- Vehicles once isolated mechanical entities, now complex interconnected systems
- Increasing networking and complexity of ITS
- Increase in targeted cyber attacks on transportation systems → changing and evolving threat landscape
- Difficulties in securing heterogeneous and distributed systems.
- There was a need for a common and sound taxonomy! → VATT&EK

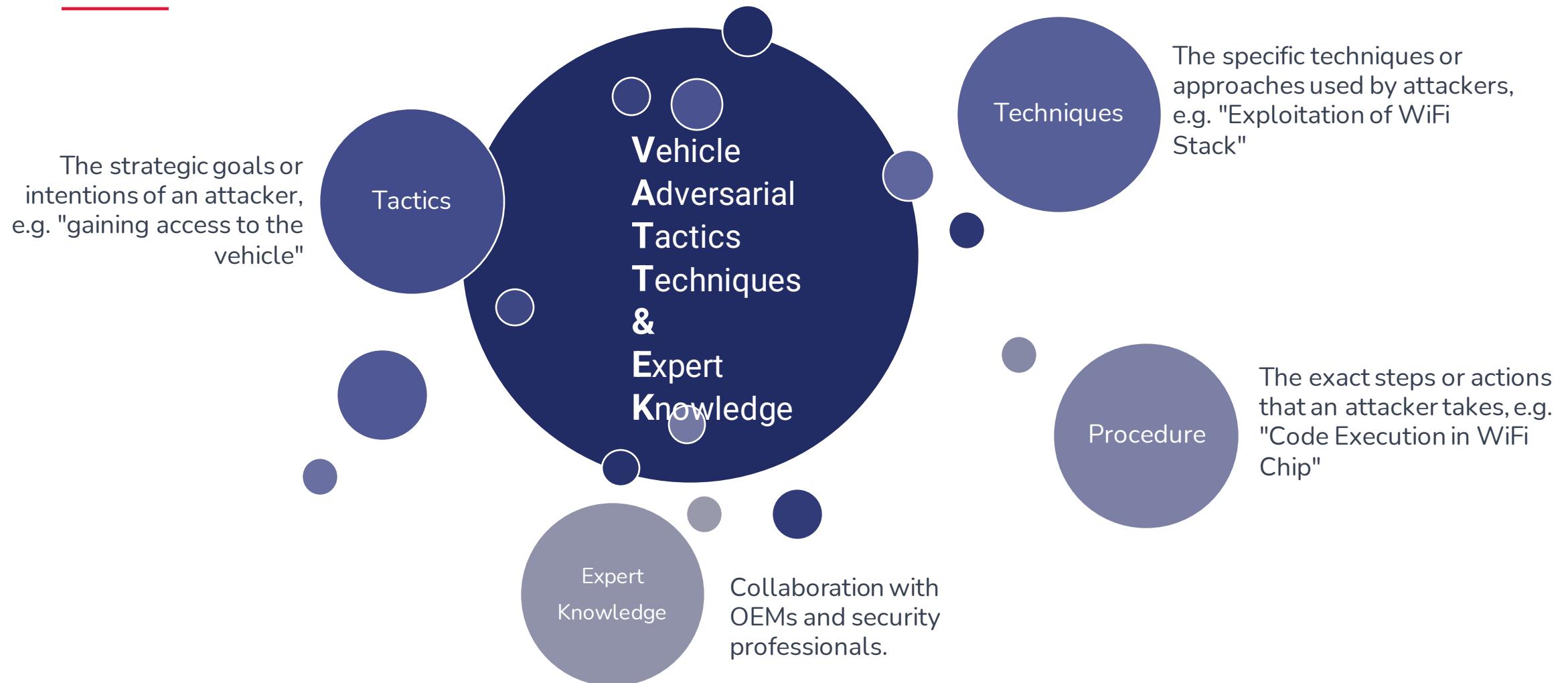
Limitations of existing attack formalization frameworks

- Frameworks such as **MITRE ATT&CK** are mostly geared towards **traditional IT environments**
- Gaps related to **automotive attack frameworks**
- No framework for **rail transport** available
- Lack of specific tools and strategies for the **unique ITS threat landscapes**.

There is a need for a customized framework that directly addresses the specific security requirements of ITS!

Methodology

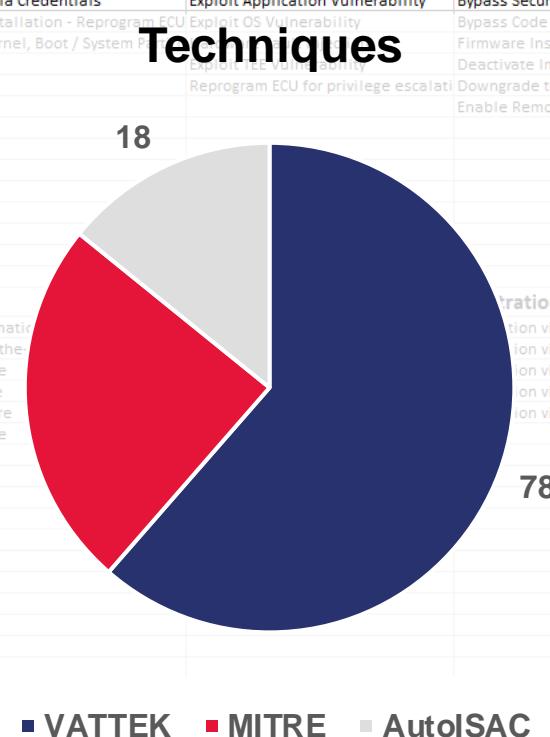
Methodology



- Analyzing the principles of existing attack formalization frameworks (MITRE ATT&EK, Auto ISAC, ASRG)
 - identify gaps
 - Integrated them (tactics, techniques, ...) into the ITS domain, if suitable
- Decade-long retrospective analysis of automotive cyber attacks
 - Classify attacks and identify attack phases
 - Discern the techniques utilized
 - Subsequently refine VATT&EK Framework
- To ensure a holistic understanding, we engaged with experts from OEMs (in the paper indicated as [OI]) enriched with insights from security professionals and penetration testers (in the paper indicated as [PTE])

The VATT&EK Framework

Basics and structure



VATT&EK Tactics & Techniques

1	Manipulate Environment	Initial Access
2	Downgrade Attacks via Rogue Base stat	Radio Data System (RDS) Attacks
3	Rogue Cellular Base Station	Malicious SMS
4	Rogue Wi-Fi Access Points	Exploitation of Wi-Fi Stack
5	GNSS Attacks	Gain access to Wi-Fi Hotspot
6	GNSS Spoofing Attacks	Exploitation via Bluetooth
7	GNSS Jamming	Exploitation via C-V2X
8	Sybil Attack	Exploitation via DSRC
9	Camera Attacks	Exploitation via Repair Shop/Garage/Fac
10	General Attacks on Camera Systems	Exploitation of OBD Dongles
11	Camera Feature Attacks	Hardware addition
12	Blinding the Camera	Physical Access (CAN-Injection)
13	LiDAR Attacks	Connect directly to the LiDAR
14	LiDAR Replay Attacks	Code Execution via SB
15	LiDAR Relaying Attack	Code Execution via SD Card
16	LiDAR Spoofing Attacks	Code Execution via
17	LiDAR Jamming/Saturation Attack	Exploitation via OBD Interface
18	Spoofing FMCW Radar	Supply Chain Compromise
19	Black Hole Attacks	Unsecured Web API
20	TPMS Attacks	Hacking in-vehicle apps
21	TPMS Jamming	Malicious App Delivery
22	TPMS Spoofing	Drive-by Compromise
23	Attacks on Road Side Units/Balise	Exploitation via charging station
24		Keyless Go Attacks
25		Replay Attack
26		Relay Attack
27		Roll Jam Attack
28		Roll Back Attack
29		Service Compartment Access
30		Maintenance Notebook Infection
31		Exploitation of Internet Accessible Device
32		Remote Maintenance Accesspoint
33		

- **14** tactics
- **127** techniques
- thereof **78** new

VATT&EK in Automotive

Jeep Hack 2015: "Researchers hacked a vehicle via the multimedia system and gained control over important functions."

- Identification of the **tactic** Initial Access: "Gain remote access to vehicle systems"
- Analysis of the **technique**: "Exploitation of Internet Accessible Device"
- Investigation of the **procedure**: "Brute force attack on the Wi-Fi password, followed by firmware manipulation to control the vehicle."
- **remote attack chain**: Exploitation of Internet Accessible Device → Inter-process Communication → Reprogram ECU for privilege escalation → (Control Lights | Kill Engine | Control IPC | Control Brake)

After Jeep Hack, Chrysler Recalls 1.4M Vehicles for Bug Fix

Welcome to the age of hackable automobiles, when two security researchers can cause a 1.4 million product recall.

ANDY GREENBERG/WIRED

VATT&EK in Railway

Hackers use radio signals to bring over 20 trains to a standstill in a cyber attack on the rail network in Poland.

- Analysis of a **real cyberattack** on trains in Poland.
- Identification of the **tactic** Affect Vehicle Function: "Disrupt train traffic" Analysis of the **technique**: "Use of a simple radio hack"
- Investigation of the **procedure**: "Sending radio signals to trigger an emergency stop"
- Such mapping cannot be represented with frameworks such as MITRE ATT&CK

Poland investigates cyber-attack on rail network

⌚ 26 August

Russia-Ukraine war

Some trains were brought to a standstill for a few hours

Use Cases

TARA support

- Systematic threat pinpointing and prioritization
- Enabling precise risk assessments and targeted mitigation strategies for vehicle cyber security

Penetration Testing Roadmap

- How can I test a vehicle or vehicle components systemically?
- What are possible attack vectors?

Threat Intelligence

- Manual / automated cyber attack analyses and mapping to techniques
- Improved tracking of different reports

Security Monitoring

- What are reasonable security monitoring use cases for vehicles?
- How large is the SuC/Use Case coverage?

Incident Response


- How did the attacker get access? What other traces are there?
- Dashboard for visualization

Teaching & Research

- Gain understanding of different cyber attack tactics, techniques, and their interplay
- Common taxonomy to discuss ITS related cyber attacks and to fosters collaboration

Conclusion & Outlook

VATT&EK addresses specific cybersecurity challenges in ITS.

VATT&EK was developed based on real scenarios in the automotive and rail transport industries

VATT&EK will adapt to future technological developments such as autonomous driving

VATT&EK offers a comprehensive and flexible approach to ensure safety in the ever-evolving world of Intelligent Transportation Systems.

VATT&EK closes a gap on ITS attack formalization

- VATT&EK provides a Roadmap for ethical hackers
- VATT&EK provides a **structured approach to understand, visualize and address ITS cyber threats**
- VATT&EK Improves threat detection and response in ITS
- VATT&EK increases the overall security and reliability of transportation systems

Questions or impulses?

Ali Recai Yekta

Yekta IT GmbH

ali@yekta-it.de

www.yekta-it.de

Dominik Spychalski

INCYDE industrial cyber defense GmbH

dominik.spychalski@incyde.com

www.incyde.com

Findings, [paper](#) & more (soon):

vehicle-threat-matrix.com

Appendix

VATT&EK - Tactics

- ATA₁ Manipulate Environment (ME)
- ATA₂ Initial Access (IA)
- ATA₃ Execution (EX)
- ATA₄ Persistence (PS)
- ATA₅ Privilege Escalation (PE)
- ATA₆ Defense Evasion (DE)
- ATA₇ Credential Access (CA)
- ATA₈ Discovery (DS)
- ATA₉ Lateral Movement (LM)
- ATA₁₀ Collection (CL)
- ATA₁₁ Command and Control (C2)
- ATA₁₂ Exfiltration (EF)
- ATA₁₃ Affect Vehicle Function (AF)
- ATA₁₄ Impact (IM)

ATA₂ Initial Access (IA)

- *ATE₁ RDS Attacks*
- *ATE₂ Malicious SMS*
- *ATE₃ Exploitation of Wi-Fi Stack*
- *ATE₄ Gain access to Wi-Fi Hotspot*
- *ATE₅ Exploitation via Bluetooth*
- *ATE₆ Exploitation via C-V2X*
- *ATE₇ Exploitation via DSRC.*
- *ATE₈ Exploitation via Repair Shop/Garage/Factory*
- *ATE₉ Exploitation of OBD Dongles*
- *ATE_{10.1} Hardware Addition (CAN-Injection)*
- *ATE₁₁ Exploitation via OBD Interface*
- *ATE₁₂ Supply Chain Compromise*
- *ATE₁₃ Unsecured Web APIs*
- *ATE₁₄ Hacking in-vehicle apps*
- *ATE₁₅ Malicious App Delivery.*
- *ATE₁₆ Drive-by Compromise.*
- *ATE₁₇ Exploitation via charging station*
- *ATE₁₈ Keyless Go Attacks*
- *ATE₁₉ Service Compartment Access*
- *ATE₂₀ Maintenance Notebook Infection*
- *ATE₂₁ Exploitation of Internet Accessible Device*
- *ATE₂₂ Remote Maintenance Accesspoint*

Chaining Tactics

- ATA₃ Execution (EX)
- ATA₄ Persistence (PS)
- ATA₅ Privilege Escalation (PE)
- ATA₆ Defense Evasion (DE)
- ATA₇ Credential Access (CA)
- ATA₈ Discovery (DS)
- ATA₉ Lateral Movement (LM)
- ATA₁₀ Collection (CL)
- ATA₁₁ Command and Control (C2)
- ATA₁₂ Exfiltration (EF)

ATA₁₃ Affect Vehicle Functions

- *ATE₁ Control Horn:*
- *ATE₂ Control HVAC*
- *ATE₃ Control Engine*
- *ATE₄ Control Doors*
- *ATE₅ Control Lights*
- *ATE₆ Control Airbag*
- *ATE₇ Control Windows.*
- *ATE₈ Speed control.*
- *ATE₉ Speed control via*
- *ATE₁₀ Stop Vehicle via Radio*
- *ATE₁₁ Manipulate Passenger Information System*
- *ATE₁₂ Control Instrument Panel Cluster*
- *ATE₁₃ Denial of Service (DoS)*
- *ATE₁₄ Message Injection*
- *ATE₁₅ Control Brake*

ATA₁₄ Impact (IM)

- **ATE₁ Denial of Control.** Attackers disrupting a vehicle's control systems, preventing operators
- **ATE₂ Denial of View.** Attackers obscure or manipulate the data presented to vehicle operators
- **ATE₃ Loss of Control.** Attackers seize control of specific vehicle functions, overriding operator inputs
- **ATE₄ Enable premium features.** Attackers unlock features that are typically behind a paywall or not activated
- **ATE₅ Chip Tuning.** This refers to the modification of the ECU to enhance a vehicle's performance, potentially compromising safety standards and regulatory compliances.
- **ATE₆ Odometer fraud.** Attackers manipulate the vehicle's odometer readings, typically to reduce the displayed mileage, affecting the vehicle's resale value and potentially misleading buyers about its usage history.
- **ATE₇ Vehicle Theft.** Attackers leveraging cyber vulnerabilities to bypass security measures and steal the vehicle, which can be applicable to both vehicles and specialized rail equipment.

Evaluation

Jeep Hack 2015:

remote attack chain: Exploitation of Internet Accessible Device → Inter-process Communication → Reprogram ECU for privilege escalation → (Control Lights | Kill Engine | Control IPC | Control Brake)

BMW Hack 2015:

remote attack chain: Rogue Wi-Fi Access Points → Malicious SMS → Enable Remote Functions → Malicious SMS → Control doors

CAN Injection Attack 2023:

local attack chain: Hardware Addition (CAN Injection) → Message Injection → Control Doors → Deactivate Engine Immobilizer